Sains Malaysiana 54(8)(2025): 1927-1944
http://doi.org/10.17576/jsm-2025-5408-05
A Series of Modified Mordenite
for Green Fuel Production from Oleic Acid
(Suatu Siri Mordenit Terubah Suai untuk Pengeluaran Bahan Api Hijau daripada Asid Oleik)
KHOIRINA DWI
NUGRAHANINGTYAS1,*, SOFIA AULIA MUKHSIN1,
RIZKI LUKITAWATI1, FITRIA RAHMAWATI1, I F NURCAHYO1,
ENY KUSRINI2,3,4 & YUNIAWAN HIDAYAT1
12Department
of Chemistry, Faculty of Mathematics and Natural Sciences, Sebelas Maret University, Jl. Ir. Sutami 36A, Surakarta,
Indonesia
2Department
of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, Kampus
Baru UI Depok, 16424, Indonesia
3Research
Group of Green Product and Fine Chemical Engineering, Laboratory of Chemical
Product Engineering, Department of Chemical Engineering, Universitas Indonesia,
Kampus Baru UI, Depok, 16424, Indonesia
4Tropical
Renewable Energy Research Center, Faculty of
Engineering, Universitas Indonesia, Kampus Baru UI, Depok,
16424, Indonesia
Received: 25 December 2024/Accepted:
23 June 2025
Abstract
Green
diesel and biogasoline are low-oxygen compounds in
green fuel. Palm oil
is a potential source of green fuel production through a hydrodeoxygenation
reaction assisted by a specific catalyst. In this research, a series of
transition metal (i.e., Fe, Co, Ni, Cu, and Zn) deposited in
mordenite (MOR) catalysts
were investigated for the hydrodeoxygenation reaction. Oleic acid was used to represent
palm oil. All catalysts can convert oleic acid into green fuel products,
particularly straight-chain alkane hydrocarbons with low free oxygen content.
The Co/MOR catalyst converted 98.82% of oleic acid with a 76% selectivity for
green fuel. The performance of the catalyst in one period follows the Sabatier
Principle for the catalyst rather than the periodic system of elements.
Keywords: Biogasoline;
green diesel; hydrodeoxygenation; mordenite; transition metal
Abstrak
Disel hijau dan biogasolin adalah sebatian oksigen rendah dalam bahan api hijau. Minyak sawit merupakan sumber berpotensi pengeluaran bahan api hijau melalui tindak balas hidrodeoksigenasi yang dibantu oleh mangkin tertentu.
Dalam penyelidikan ini, satu siri logam peralihan (iaitu, Fe, Co,
Ni, Cu dan Zn) yang dimendapkan dalam mangkin mordenit (MOR) telah dikaji untuk tindak balas hidrodeoksigenasi. Asid oleik digunakan untuk mewakili minyak sawit. Semua pemangkin boleh menukar asid oleik kepada produk bahan api hijau, terutamanya hidrokarbon alkana rantai lurus dengan kandungan oksigen bebas yang rendah. Pemangkin
Co/MOR menukarkan 98.82% asid oleik dengan selektiviti 76% untuk bahan api
hijau. Prestasi pemangkin dalam satu tempoh mengikut Prinsip Sabatier untuk
pemangkin dan bukannya sistem unsur berkala.
Kata kunci: Biogasolin;
disel hijau; hidrodeoksigenasi; logam peralihan; mordenit
REFERENCES
Ajeeb, W., Gomes, D.M., Neto, R.C. & Baptista, P. 2025. Life cycle
analysis of hydrotreated vegetable oils production based on green hydrogen and
used cooking oils. Fuel 390: 134749. https://doi.org/10.1016/J.FUEL.2025.134749
Aliana-Nasharuddin, N., Asikin-Mijan, N., Abdulkareem-Alsultan, G., Saiman,
M.I., Alharthi, F.A. Alghamdi, A.A. & Taufiq-Yap, Y.H. 2019. Production of green
diesel from catalytic deoxygenation of chicken fat oil over a series binary
metal oxide-supported MWCNTs. RSC Advances 10(2): 626-642.
https://doi.org/10.1039/c9ra08409f
Arun, N., Sharma, R.V. & Dalai, A.K. 2015. Green diesel synthesis by
hydrodeoxygenation of bio-based feedstocks: Strategies for catalyst design and
development. Renewable and Sustainable Energy Reviews 48: 240-255.
https://doi.org/10.1016/j.rser.2015.03.074
Arun, N., Nanda, S., Hu, Y. & Dalai, A.K. 2021. Hydrodeoxygenation of
oleic acid using γ-Al2O3 supported transition
metallic catalyst systems: Insight into the development of novel FeCu/γ-Al2O3 catalyst. Molecular Catalysis 523: 111526.
https://doi.org/10.1016/j.mcat.2021.111526
Asikin-Mijan, N., Juan, J.C., Taufiq-Yap, Y.H., Ong, H.C., Lin, Y.C., AbdulKareem-Alsultan,
G. & Lee, H.V. 2023. Towards sustainable green diesel fuel production:
Advancements and opportunities in acid-base catalyzed H2-free
deoxygenation process. Catalysis Communications 182: 106741.
https://doi.org/10.1016/j.catcom.2023.106741
Ayodele, O.B. 2017. Influence of oxalate ligand functionalization on
Co/ZSM-5 activity in Fischer Tropsch synthesis and hydrodeoxygenation of oleic
acid into hydrocarbon fuels. Scientific Reports 7(1): 10008.
https://doi.org/10.1038/s41598-017-09706-z
Bardestani, R., Patience, G.S. & Kaliaguine, S. 2019. Experimental methods
in chemical engineering: Specific surface area and pore size distribution
measurements—BET, BJH, and DFT. The Canadian Journal of Chemical Engineering 97(11): 2781-2791. https://doi.org/10.1002/cjce.23632
Carli, M.F., Susanto, B.H. & Habibie, T.K. 2018. Sythesis of bioavture
through hydrodeoxygenation and catalytic cracking from oleic acid using NiMo/zeolit
catalyst. E3S Web of Conferences 67: 02023.
https://doi.org/10.1051/e3sconf/20186702023
Chen, L., Janssens, T.V.W., Skoglundh, M. & Grönbeck, H. 2019.
Interpretation of NH3-TPD profiles from Cu-CHA using
first-principles calculations. Topics in Catalysis 62(1-4): 93-99.
https://doi.org/10.1007/s11244-018-1095-y
Choo, M.Y., Oi, L.E., Ling, T.C., Ng, E.P., Lin, Y.C., Centi, G. &
Juan, J.C. 2020. Deoxygenation of triolein to green diesel in the H2-free
condition: Effect of transition metal oxide supported on zeolite Y. Journal
of Analytical and Applied Pyrolysis 147: 104797.
https://doi.org/10.1016/j.jaap.2020.104797
Crawford, J.M., Zaccarine, S.F., Kovach, N.C., Smoljan, C.S., Lucero, J., Trewyn,
B.G., Pylypenko, S. & Carreon, M.A. 2020. Decarboxylation of stearic acid
over Ni/MOR catalysts. Journal of Chemical Technology & Biotechnology 95(1): 102-110. https://doi.org/10.1002/jctb.6211
de Oliveira Camargo, M., Willimann Pimenta, J.L.C., de Oliveira Camargo, M.
& Arroyo, P.A. 2020. Green diesel production by solvent-free deoxygenation
of oleic acid over nickel phosphide bifunctional catalysts: Effect of the support. Fuel 281: 118719. https://doi.org/10.1016/j.fuel.2020.118719
Douvartzides, S.L., Charisiou, N.D., Papageridis, K.N. & Goula, M.A. 2019.
Green diesel: Biomass feedstocks, production technologies, catalytic research,
fuel properties and performance in compression ıgnition ınternal
combustion engines. Energies 12(5): 809.
https://doi.org/10.3390/en12050809
Feng, F., Wang, L., Zhang, X. & Wang, Q. 2019. Selective hydroconversion
of oleic acid into aviation-fuel-range alkanes over ultrathin Ni/ZSM-5 nanosheets. Industrial and Engineering Chemistry Research 58(14): 5432-5444.
https://doi.org/10.1021/acs.iecr.9b00103
Hafriz, R.S.R.M., Nor Shafizah, I., Salmiaton, A., Arifin, N.A., Yunus, R.,
Taufiq Yap, Y.H. & Abd Halim, S. 2020. Comparative study of transition
metal-doped calcined Malaysian dolomite catalysts for WCO deoxygenation reaction. Arabian Journal of Chemistry 13(11): 8146-8159.
https://doi.org/10.1016/j.arabjc.2020.09.046
Haryani, N., Harahap, H., Taslim & Irvan. 2020. Biogasoline production
via catalytic cracking process using zeolite and zeolite catalyst modified with
metals: A review. IOP Conference Series: Materials Science and Engineering 801: 012051. https://doi.org/10.1088/1757-899X/801/1/012051
Hongloi, N., Prapainainar, P. & Prapainainar, C. 2022. Review of green
diesel production from fatty acid deoxygenation over Ni-based catalysts. Molecular
Catalysis 523: 111696. https://doi.org/10.1016/J.MCAT.2021.111696
Hongloi, N., Prapainainar, P., Seubsai, A., Sudsakorn, K. & Prapainainar,
C. 2019. Nickel catalyst with different supports for green diesel production. Energy 182: 306-320. https://doi.org/10.1016/j.energy.2019.06.020
I. Istadi, Rahma Amalia, Teguh Riyanto, Didi D. Anggoro, Bunjerd
Jongsomjit & Ari Bawono Putranto. 2022. Acids treatment for ımproving
catalytic properties and activity of the spent RFCC catalyst for cracking of
palm oil to kerosene-diesel fraction fuels. Molecular Catalysis 527:
112420. https://doi.org/10.1016/J.MCAT.2022.112420
Janampelli, S. & Darbha, S. 2019. Highly efficient Pt-MoOx/ZrO2 catalyst
for green diesel production. Catalysis Communications 125: 70-76.
https://doi.org/10.1016/j.catcom.2019.03.027
Jeon, K.W., Na, H.S., Lee, Y.L., Ahn, S.Y., Kim, K.J., Shim, J.O., Jang, W.J.,
Jeong, D.W., Nah, I.W. & Roh, H.S. 2019a. Catalytic deoxygenation of oleic
acid over a Ni-CeZrO2 catalyst. Fuel 258: 116179.
https://doi.org/10.1016/j.fuel.2019.116179
Jeon, K-W., Shim, J-O., Jang, W-J., Lee, D.W., Na, H-S., Kim, H-M., Lee, Y-L.,
Yoo, S-Y., Roh, H-S., Jeon, B-H., Bae, J.W. & Ko, C.H. 2019b. Effect of calcination
temperature on the association between free NiO species and catalytic activity
of Ni−Ce0.6Zr0.4O2 deoxygenation
catalysts for biodiesel production. Renewable Energy 131: 144-151.
https://doi.org/10.1016/j.renene.2018.07.042
Jing, Z-Y., Zhang, T-Q., Shang, J-W., Zhai, M-L., Yang, H., Qiao, C-Z.
& Ma, X-Q. 2018. Influence of Cu and Mo components of γ-Al2O3 supported nickel catalysts on hydrodeoxygenation of fatty acid methyl esters to
fuel-like hydrocarbons. Journal of Fuel Chemistry and Technology 46(4):
427-440. https://doi.org/10.1016/S1872-5813(18)30018-5
Kamaruzaman, M.F., Taufiq-Yap, Y.H. & Derawi, D. 2020. Green diesel
production from palm fatty acid distillate over SBA-15-supported nickel,
cobalt, and nickel/cobalt catalysts. Biomass and Bioenergy 134: 105476.
https://doi.org/10.1016/j.biombioe.2020.105476
Kochaputi, N., Kongmark, C., Khemthong, P., Butburee, T., Kuboon, S., Worayingyong,
A. & Faungnawakij, K. 2019. Catalytic behaviors of supported Cu, Ni, and Co
phosphide catalysts for deoxygenation of oleic acid. Catalysts 9(9):
715. https://doi.org/10.3390/catal9090715
Kordulis, C., Bourikas, K., Gousi, M., Kordouli, E. & Lycourghiotis, A.
2016. Development of nickel based catalysts for the transformation of natural
triglycerides and related compounds into green diesel: A critical review. Applied
Catalysis B: Environmental 181: 156-196. https://doi.org/10.1016/j.apcatb.2015.07.042
Li, W., Li, F., Wang, H., Liao, M., Li, P., Zheng, J., Tu, C. & Li, R.
2020. Hierarchical mesoporous ZSM-5 supported nickel catalyst for the catalytic
hydrodeoxygenation of anisole to cyclohexane. Molecular Catalysis 480:
110642. https://doi.org/10.1016/j.mcat.2019.110642
Luciano, V.A., de Paula, F.G., Pinto, P.S., Prates, C.D., Pereira, R.C.G.,
Ardisson, J.D., Rosmaninho, M.G. & Teixeira, A.P.C. 2022. Thermal cracking
of oleic acid promoted by ıron species from ıron ore tailings for the
production of ketones and fuels. Fuel 310(Part A): 122290.
https://doi.org/10.1016/j.fuel.2021.122290
Mazlan, Nugrahaningtyas, K.D. & Rahmawati, F. 2022. Effect of Fe metal
loading on the character of HZSM-5. AIP Conference Proceedings 2391: 050011.
https://doi.org/10.1063/5.0072981
Miao, C., Zhou, G., Chen, S., Xie, H. & Zhang, X. 2020. Synergistic effects
between Cu and Ni species in NiCu/γ-Al2O3 catalysts
for hydrodeoxygenation of methyl laurate. Renewable Energy 153: 1439-1454.
https://doi.org/10.1016/j.renene.2020.02.099
Mirzayanti, Y.W., Kurniawansyah, F., Prajitno, D.H. & Roesyadi, A. 2018.
Zn-Mo/HZSM-5 catalyst for gasoil range hydrocarbon production by catalytic
hydrocracking of Ceiba pentandra oil. Bulletin of Chemical Reaction
Engineering & Catalysis 13(1): 136-143.
https://doi.org/10.9767/bcrec.13.1.1508.136-143
Morgan, A.S., Hossain, M.Z., Chowdhury, M.B.I. & Charpentier, P. 2024.
ScCO2 decarboxylation of oleic acid to green diesel. The Journal
of Supercritical Fluids 205: 106120.
https://doi.org/10.1016/J.SUPFLU.2023.106120
Na, J.G., Yi, B.E., Kim, J.N., Yi, K.B., Park, S.Y., Park, J.H., Kim, J.N.
& Ko, C.H. 2010. Hydrocarbon production from decarboxylation of fatty acid
without hydrogen. Catalysis Today 156(1-2): 44-48.
https://doi.org/10.1016/j.cattod.2009.11.008
Neonufa, G.F., Soerawidjaja, T.H., Indarto, A. & Prakoso, T. 2019. An ınnovative
technique to suppress alkene-bond in green diesel by Mg–Fe basic soap thermal
decarboxylation. International Journal of Ambient Energy 40(4): 374-380.
https://doi.org/10.1080/01430750.2017.1399451
Nugraha, R.E., Purnomo, H., Aziz, A., Holilah, H., Bahruji, H., Asikin-Mijan,
N., Suprapto, S., Taufiq-Yap, Y.H., Abdul Jalil, A., Hartati, H. &
Prasetyoko, D. 2024. The mechanism of oleic acid deoxygenation to green diesel
hydrocarbon using porous aluminosilicate catalysts. South African Journal of
Chemical Engineering 49: 122-135.
https://doi.org/10.1016/J.SAJCE.2024.04.009
Nugrahaningtyas, K.D., Putri, M.M. & Saraswati, T.E. 2020. Metal phase
and electron density of transition Metal/HZSM-5. AIP Conference Proceedings 2237: 020003. https://doi.org/10.1063/5.0005561
Nugrahaningtyas, K.D., Hidayat, Y., Lukitawati, R., Mukhsin, S.A. &
Sabiilagusti, A.I. 2022a. The effect of hydrogen flow rate and temperature on
hydrodeoxygenation of oleic acid over Ni/MOR catalysts. AIP Conference
Proceedings 2022: 020041. https://doi.org/10.1063/5.0111684
Nugrahaningtyas, K.D., Kurniawati, M.F., Masykur, A. & 'Abidah
Quratul’aini. N. 2022b. Periodic trends in the character of first-row
transition metals-based catalysts embedded on mordenite. Moroccan Journal of
Chemistry 10(3): 375-386.
https://doi.org/10.48317/IMIST.PRSM/morjchem-v10i3.30900
Nugrahaningtyas, K.D., Suharbiansah, R.S.R., Lestari, W.W. & Rahmawati,
F. 2022c. Metal phase, electron density, textural properties, and catalytic
activity of CoMo based catalyst applied in hydrodeoxygenation of oleic acid. Evergreen 9(2): 283-291. https://doi.org/10.5109/4793665
Nugrahaningtyas, K.D., Heraldy, E., Rachmadani, Hidayat, Y. & Kartini,
I. 2021. Effect of synthesis and activation methods on the character of
CoMo/ultrastable Y-Zeolite catalysts. Open Chemistry 19(1): 745-754.
https://doi.org/10.1515/chem-2021-0064
Nugrahaningtyas, K.D., Putri, I.F., Heraldy, E. & Hidayat, Y. 2018.
The catalytic activity of CoMo/USY on deoxygenation reaction of anisole in a
batch reactor. IOP Conference Series: Materials Science and Engineering 349: 012030. https://doi.org/10.1088/1757-899X/349/1/012030
Nur Azreena, I., Asikin-Mijan, N., Lau, H.L.N., Hassan, M.A., Mohd Izham, S.,
Kennedy, E., Stockenhuber, M., Yan, P. & Taufiq-Yap, Y.H. 2024. Hydro-processing
of palm fatty acid distillate for diesel-like hydrocarbon fuel production using
La-zeolite beta catalyst. Industrial Crops and Products 218: 118907.
https://doi.org/10.1016/j.indcrop.2024.118907
Nur Azreena, I., Lau, H.L.N., Asikin-Mijan, N., Hassan, M.A., Mohd Izham, S.,
Kennedy, E., Stockenhuber, M., Mastuli, M.S., Alharthi, F.A., Alghamdi, A.A.
& Taufiq-Yap, Y.H. 2021. A promoter effect on hydrodeoxygenation reactions
of oleic acid by zeolite beta catalysts. Journal of Analytical and Applied
Pyrolysis 155: 105044. https://doi.org/10.1016/j.jaap.2021.105044
Orozco, L.M., Echeverri, D.A., Sánchez, L. & Rios, L.A. 2017. Second-generation
green diesel from castor oil: Development of a new and efficient
continuous-production process. Chemical Engineering Journal 322: 149-156.
https://doi.org/10.1016/j.cej.2017.04.027
Oyedotun, T.D.T. 2018. X-ray fluorescence (XRF) in the ınvestigation
of the composition of earth materials: A review and an overview. Geology,
Ecology, and Landscapes 2(2): 148-154.
https://doi.org/10.1080/24749508.2018.1452459
Panchuk, V., Yaroshenko, I., Legin, A., Semenov, V. & Kirsanov, D. 2018.
Application of chemometric methods to XRF-data - A tutorial review. Analytica
Chimica Acta 1040: 19-32. https://doi.org/10.1016/j.aca.2018.05.023
Pazmiño-Viteri, K., Cabezas-Terán, K., Echeverría, D., Cabrera, M. &
Taco-Vásquez, S. 2024. Average carbon number analysis and relationship with
octane number and PIONA analysis of premium and regular gasoline expended in
Ecuador. Processes 12(8): 1706. https://doi.org/10.3390/pr12081706
Pourzolfaghar, H., Abnisa, F., Wan Daud, W.M.A. & Aroua, M.K. 2020.
Gas-phase hydrodeoxygenation of phenol over Zn/SiO2 catalysts:
Effects of zinc load, temperature, weight hourly space velocity, and H2 volumetric flow rate. Biomass and Bioenergy 138: 105556.
https://doi.org/10.1016/J.BIOMBIOE.2020.105556
Prakhar, A., Ojagh, H., Woo, J., Grennfelt, E.L., Olsson, L. &
Creaser, D. 2018. Investigating the effect of Fe as a poison for catalytic HDO
over sulfided NiMo alumina catalysts. Applied Catalysis B: Environmental 227: 240-251. https://doi.org/10.1016/j.apcatb.2018.01.027
Puspawiningtiyas, E., Prakoso, T., Pratiwi, M., Subagjo, S. &
Soerawidjaja, T.H. 2022. Production of biogasoline via pyrolysis of oleic
acid basic soaps. Journal of
Engineering and Technological Sciences 54(3): 220311.
https://doi.org/10.5614/J.ENG.TECHNOL.SCI.2022.54.3.11
Rogers, K.A. & Zheng, Y. 2016. Selective deoxygenation of
biomass-derived bio-oils within hydrogen-modest environments: A review and new
ınsights. ChemSusChem 9(14): 1750-1772.
https://doi.org/10.1002/cssc.201600144
Safa Gamal, M., Asikin-Mijan, N., Wan Khalit, W.N.A., Arumugam, M., Mohd
Izham, S. & Taufiq-Yap, Y.H. 2020. Effective catalytic deoxygenation of
palm fatty acid distillate for green diesel production under hydrogen-free
atmosphere over bimetallic catalyst CoMo supported on activated carbon. Fuel
Processing Technology 208: 106519.
https://doi.org/10.1016/j.fuproc.2020.106519
Sakizci, M. & Kılınç, L.Ö. 2015. Influence of acid and heavy metal cation exchange treatments on
methane adsorption properties of mordenite. Turkish Journal of Chemistry 39(5): 970-983. https://doi.org/10.3906/kim-1501-71
Shim, J-O., Jeong, D-W., Jang, W-J., Jeon, K-W., Kim, S-H., Jeon, B-H., Roh,
H-S., Na, J-G., Oh, Y-K., Han, S.S. & Ko, C.H. 2015. Optimization of unsupported
CoMo catalysts for decarboxylation of oleic acid. Catalysis Communications 67: 16-20. https://doi.org/10.1016/j.catcom.2015.03.034
Siraj, M. & Ceylan, S. 2025. Investigation of the effect of catalyst
support on oleic acid catalytic deoxygenation for green diesel production. Journal
of Porous Materials 32: 941-952. https://doi.org/10.1007/S10934-024-01725-2
Tamiyakul, S., Ubolcharoen, W., Tungasmita, D.N. & Jongpatiwut, S. 2015.
Conversion of glycerol to aromatic hydrocarbons over Zn-promoted HZSM-5 catalysts. Catalysis Today 256(P2): 325-335.
https://doi.org/10.1016/j.cattod.2014.12.030
Taromi, A.A. & Kaliaguine, S. 2018. Green diesel production via
continuous hydrotreatment of triglycerides over mesostructured γ-alumina
supported NiMo/CoMo catalysts. Fuel Processing Technology 171: 20-30.
https://doi.org/10.1016/j.fuproc.2017.10.024
Wang, F., Xu, J., Jiang, J., Liu, P., Li, F., Ye, J. &
Zhou, M. 2018. Hydrotreatment of vegetable oil for green diesel over activated
carbon supported molybdenum carbide catalyst. Fuel 216: 738-746.
https://doi.org/10.1016/j.fuel.2017.12.059
Zdainal Abidin, S.N., Lee, H.V., Asikin-Mijan, N., Juan, J.C., Abd Rahman,
N., Mastuli, M.S., Taufiq-Yap, Y.H. & Kong, P.S. 2019. Ni, Zn and Fe hydrotalcite-like
catalysts for catalytic biomass compound into green biofuel. Pure and
Applied Chemistry 92(4): 587-600. https://doi.org/10.1515/pac-2019-0820
Zhang, Z., Bi, G., Zhang, H., Zhang, A., Li, X. & Xie, J. 2019. Highly
active and selective hydrodeoxygenation of oleic acid to second generation
bio-diesel over SiO2-supported CoxNi1−xP catalysts. Fuel 247: 26-35. https://doi.org/10.1016/j.fuel.2019.03.021
Zhao, X., Wei, L., Cheng, S., Cao, Y., Julson, J. & Gu, Z. 2015.
Catalytic cracking of carinata oil for hydrocarbon biofuel over fresh and
regenerated Zn/Na-ZSM-5. Applied Catalysis A: General 507: 44-55.
https://doi.org/10.1016/J.APCATA.2015.09.031
Zheng, Y., Wang, J., Liu, C., Lu, Y., Lin, X., Li, W. & Zheng, Z. 2020.
Efficient and stable Ni-Cu catalysts for ex situ catalytic pyrolysis
vapor upgrading of oleic acid into hydrocarbon: Effect of catalyst support,
process parameters and Ni-to-Cu mixed ratio. Renewable Energy 154: 797-812.
https://doi.org/10.1016/j.renene.2020.03.058
*Corresponding author;
email: khoirinadwi@staff.uns.ac.id